Тут недавно, в комментариях к интересной математике, меня попросили объяснить, что такое пропорция и отношение. Я так полагаю, что ни один математик сегодня не в состоянии толком объяснить пропорции. Почему? Во-первых, их этому не учили. Во-вторых, у них нет собственных мозгов, думают математики только определениями. Но начать нам нужно с темы «дроби и свойства дробей». Есть там один очень примечательный фрагмент, который нам и покажет, где рождаются пропорции.
Возьмем математический справочник и почитаем. Почему справочник? Там нет мусора, который так любят совать в учебники их авторы. Всё коротко, не совсем ясно, но пригодно для широкого употребления. Справочник рассчитан на учащихся средних специальных заведений. То есть, на тех, кто школу уже закончил и всё давно забыл, а учебники выбросил. А тут под рукой справочник — всё самое основное для быстрого восстановления памяти.
Дроби и свойства дробей |
Начинается этот раздел из грозного определения рациональных чисел. Они же дроби. Лично я ничего не имею против дробей, но я против несокрушимой тупости определений. Буквы в определение можно вписать любые и смысл его от этого не изменится.
Варианты обозначения дробей |
Я так же против деления чисел на натуральные, целые, рациональные и так далее. Этот числовой расизм — бытовой пережиток каменного века. Разделяй и властвуй — вот какой принцип заложен в основу деления чисел по внешнему виду. О чем это я? А вот о чём.
Вы внимательно прочитали текст на первой картинке? А теперь попробуйте ответить на вопрос «Что такое единица?». Что бы вы не сказали, я всегда могу возразить, что ваш ответ не правильный. Фокус в том, что однозначно правильного ответа не существует. Есть множество правильных ответов, из которых я всегда могу выбрать не тот, что сказали вы. Что бы поставить вам двойку. Или назвать ваш ответ правильным, что бы поставить отлично.
Смотрите. Любая дробь, у которой числитель равен знаменателю, всегда равна единице и называется это неправильной дробью. Так что такое единица? Это и натуральное число, и целое число, и рациональное число, и неправильная дробь… Теперь попробуйте угадать с трех раз, какой ответ хочет от вас услышать учитель? А ведь у учителя в запасе есть и четвертый вариант.
Но дробь ещё можно называть отношением. Хотя, по другим источникам, отношением двух чисел называется частное этих чисел. То есть не само обозначение деления, а его результат. Но в таком случае и простая дробь, она же обыкновенная дробь — это не что иное, как недоделанное деление. Так сказать, «протокол о намерениях». Ведь в числите и знаменателе могут стоять натуральные числа (иррациональное число), одинокие буквы (простая дробь), математические выражения (алгебраическая дробь).
Вам ещё не страшно? Добавим к этому гаданию на кофейной гуще ещё один рецепт. Из древнего Вавилона. Дело в том, что у древних вавилонян не было понятия дробного числа. Дробь они изображали как умножение числа (натуральное число больше единицы) на обратное число (единица, деленная на число). Вот как это выглядит в классическом обозначении дроби.
Вавилонский вариант дроби |
Наши математики такое развитие сюжета тупо игнорируют. Ведь здесь мы лицом к лицу сталкиваемся с вопросом: «А что такое умножение и деление?». Судя по всему, современные математики не способны внятно ответить на этот вопрос.
Лично я древним математикам верю гораздо больше, чем современным. Ведь математика в современном супермаркете отличается от математики на базаре древнего Вавилона только тем, что на современных ценниках присутствуют нули, которых пять тысяч лет назад не было. Числа, сложение, вычитание, умножение, деление, измерение длины, времени, углов, вычисление площади, объема, квадратного корня… Всё, чем мы ежедневно пользуемся сегодня в быту, и даже больше, появилось ещё в те незапамятные времена.
Современные математики подарили нам ноль и никому не понятные толстые учебники. А ещё они здорово (или не очень) умеют решать те задачи, которые их заставляют решать. Но все эти решения больше похожи на пляски шаманов с бубнами, чем на осмысленные действия.
Но это всё так, старческое брюзжание. Для общего развития. Что делать вам? Тупо учите то, что вас заставляют учить, и отвечайте то, что от вас хотят услышать. Свое мнение оставляйте при себе. Может быть, когда-нибудь, вы сможете его высказать без вреда для себя. А пока… Если вы понимаете больше, чем окружающие, это уже ваш плюс в борьбе за место под солнцем.
Теперь вернемся к математике и рассмотрим сравнение дробей.
Спасибо!
Спасибчик